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LETTER TO THE EDITOR 

On an equivalence of chaotic attractors 
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Abstract. In this paper a topological definition of the equivalence between chaotic attractors 
is analysed by wnsidedng two examples in detail. 

In spite of the significant progress that has been made in recent years in the understanding 
of chaos, the general problem of establishing and analysing chaotic attractors of differential 
equations is still wide open [ 11. This letter addresses ,the question of the equivalence of 
chaotic attractors. Let us assume that the dynamical systems x = f(m) and y - g(y) 
have chaotic attractors A, and A, respectively. For simplicity, we will assume that 
x = ( X I .  Xz,X3)T E R3 and y = ( y ~ ,  yz, ~ 3 ) ~  E R3. The following definition ensures 
topological equivalence of two chaotic attractors: an attractor Af is equivalent to A, if 
there exists a homeomorphism h: R3 -+ R3 such that h(Af) = A,. 

Equivalent attractors are said to be of the Same type and each equivalence class of 
chaotic attractors is an attractor type. The above definition is ‘sttong’ in the sense that there 
is a large number of different attractor types. The question of a ‘weaker’ definition (and 
only a small number of attractor types) will be addressed in a forthcoming paper: the main 
purpose of this letter is to present examples of equivalent chaotic attractors. 

Piecewise-linear systems. 
systems, defined by a state equation: 

Consider a class C of piecewiselinear continuous dynamical 

A i x f b  XI > 1 

A-1z-I-c X I  < - I  
i : = f ( ~ ) =  A ~ z  -1 < X I  < 1 (1) 

A-1=&+ cz 0 0 . (2) 

1 
where A. = [ai j ]  is a 3 x 3 y t r i x ,  b = (bl, bz, b3)T, c = (c1, q, ~ 3 ) ~  and 

[:: : :I AI =Ao- bz 0 0 [:: : :I 
Equations (1) and (2) define a 15-parameter family of ordinary differential equations with 
parameters: ai.,, bi and ci; i ,  j = 1,2,3. Let (AI, Az, 4). (pl, pz, p3) and ( V I .  V Z ,  Y) 
denote the eigenvalues of the matrices Ao, A1 and A-1 respectively. We will henceforth 
refer to these eigenvalues as the dynamical system’s eigenvalues. Define 

0 3 

k3i.=,xaljaji i = 1,2,3. (3) 
j = l  

K =  [iI a12 :3] 
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Proposition 1. k t  CO be a subset of C such that det K = 0. Then if two dynamical systems 
f, g E C\& have the same eigenvalues, A s  is equivalent to A,. 

Proof. Let us define the following: 

P l = h l + h 2 + ~ 3  4 1 = P l + P Z + P 3  r l = v l + V 2 + V 3  

p2=hlh2+hlh3+h2h3 @ = f i 1 ~ 2 + f i l P 3 + P Z P 3  T 2 =  V l U Z + V l V 3 + , V Z Y  

P3 = hlhh3 43 PIP2&3 T3 = V i V z V 3 .  

Define the transformation 

z = Kx. 

Since det K # 0, K-' exists and (1) transforms into 

KA1K-'Z + Kb 

K A - ~ K - ~ Z  + KC 

z1 > 1 
- 1 < z 1 < 1  

z1 Q -1 
(4) 

where 

KAoK-' = [: 0 ? ]  1 

P3 -m P1 ~~ - 
] = [ 21 PI - 41 

42 - P2 + Pl (P1  - 41) 
P 3 - 4 3 - P 2 ( P 1 - 4 l ) + P l [ 9 2 - P 2 + P I ( P 1 - 4 1 ) 1  

K b =  [ 
TI -PI 

Kc= [ P2 - r2 + P l @ l  - P1) 
r3 - p3 - ab1 - P I )  + P ~ P Z  - n  + P I ( T I  - PI)] 

Assume that f, g E C\G have the same eigenvalues. Then, both systems can be 
transformed into (4). As a consequence, if f and g have chaotic attractors Af and As 
respectively, then they are equivalent: the homeomorphism h is given by the matrix KfK;l 
(or KY1KS) (Kf denotes the matrix K for system f ,  and Ks denotes the matrix K for 9). 0 

In fact, with proposition 1 we have proved much more; namely, that the dynamics of 
every system in C\G can be mapped into the system (4). Thus, the separate analysis of 
every 15-parameter system in C\& is unnecessary: it is enough to make the analysis of the 
nine-parameter system (4) only. 

Note that dynamical system considered in [2] are elements in C\G. 
The attempt to identify the equivalence classes of the nine-parameter family will be 

presented in [31. 
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Bia'irecfional coupling. Let us consider the following dynamical system: 

where h, p are real non-negative parameters. Let us assume that the dynamical systems 
X = f(a:), 0 = g(y) and (6) have chaotic attractors Af. A, and A respectively. Denote 
the projection of A on the subspace a: = (XI.XZ, ~ 3 ) ~  E B3.by A,, and on the subspace 
Y = ( ~ i ,  YZ, ~ 3 ) ~  E R3 by A,. 

Proposition 2. (i) If f = g and Ir(f = 0) - y(t = O)[ is Sufficiently small, then there 
exists a value of k --'A + p, say k., such that for k z k,, A, is equivalent to A,. 

(ii) I f f  # g and A = CO, then A, is equivalent to A,. 
(ii) If f # g and p = w, then A, is equivalent to A,. 

Proof. For simplicity we present a proof for the piecewiselinear systems case; a general 
proof will be given in [3]. 

(i) First note that the inequalities 

are sufficient for the stability of a matrix [aij] with negative diagonal elements. Denote 
U = a: - y, so that from (6) we have 

U = {-@+ w)E + Dflu=aJU + O(Z, Y) AU + 'XZ, Y) 
where Df is the Jacobian matrix of f, E is the unit matrix and 06, y) represents the 
higher-order terms. It is obvious that one can find k such that matrix A = [aij] is stable, 
that i s  U = 0 is asymptotically stable, and z(t) approaches y(t) as f -+ CO. Hence, A, is 
equivalent to A, (the 'homeomorphism h: Et3 -+ B3 is the identity). 

(ii) Equation (6) can be rewritten as 

1 &X = &f(a:) + (y - a:) 
Y = g(Y) +&(a: - Y) (7) 

where E = 1 /A. If E = 0, the last equation is equivalent to 

Y = dY) 1. 
Thus, A, is equivalent to A, (again, the homeomorphism h: B3 + R3 is the identity). 

0 

The second and the third part of proposition 2 can be improved in the following way. 

Proposition 3. For sufficiently small Ir(t = O)[ + Iy(t = O)[ and E,  there exists to such 
that a:@) converges uniformly to y(f) as E -+ O+ on all subsets of fo < f i CO. 

The proof of (iii) is similar. 

Proof. The proof is similar to the proof of theorem 2 in [4,7]. n 
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F i  1. (a) Rossler and (b) Lorenz amaefor. 

S 

We shall now consider in more detail the case f # g and finite, but with 'large 
enough' h. For given dynamical systems we can show numerically that A, is equivalent 
to A,. Assume that the vector field f is that of a Rossler system and g is that 
of a Lorenz system: f = (-(xz + X ~ ) , X I  + 0.Zx2, 0.2 + x ~ ( x ,  - 5.57)), and g = 
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Figure 2. The projection of the chaotic attractor A on the subspace (a) z = (XI. xz. 
and (b) on the subspace y = (yl. yz, ydr  E R3. 

E R3 

(lO(-y, + yz), 28yl - yz - YIA. y~yz - 2.666~3). Figures 1 and 2 show the attractors 
A, and A, for h = p = 0 and 1 = 100, /I = 1, respectively. Both attractors in figure 2 
are similar. Our analysis of the equivalence of these two attractors is based on the fact 
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Figure 3. Lorenz template. 

that a dense set of unstable periodic orbits are embedded within the chaotic attractor. The 
topological structure of the flow can be visualized by constructing a template or knot-holder. 
In its construction we use the approach of Mindlin eta1 [5]: the template is constructed from 
the attractor by extracting only the lowest periodic orbits embedded in the attractor. The 
result is shown in figure 3: attractors A, and A, have the same template, namely the well 
known Lorenz template [6]. The template is a tool for computing the topological properties 
of the periodic orbits embedded in the attractor. Hence, periodic orbits embedded in both 
attractors Ax and A, have the same topologicalpropem~es. As a consequence, for two knots 
K1 and Kz of the same type, K1 c A, and K 2  c A,, there exists a homeomorphism of R3 
onto itself which maps K1 onto Kz.  Thus, we conjecture that A, and A, are equivalent. 
Additional evidence that attractors Ai and A, are equivalent can be given by considering 
equations (7). If E is 'small enough', it follows I % y, that is, the considered chaotic 
attractors are equivalent. 
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