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Abstract. In this paper a topological definition of the equivalence between chaotic attractors
is analysed by considering two examples in detail.

In spite of the significant progress that has been made in recent years in the understanding
of chaos, the general problem of establishing and analysing chaotic attractors of differential
equations is still wide open [1]. This letter addresses the question of the equivalence of
chaotic attractors. Let us assume that the dynamical systems £ = f(z) and % — g(y)
have chaotic attractors Ay and A, respectively. For simplicity, we will assume that
x = (x1,%,x)" € R® and y = (y1, 2. v3)" € R®. The following definition ensures
topological equivalence of two chaotic attractors: an atiractor Ay is equivalent to A, if
there exists a homeomorphism h: R? — R® such that h(A;) = 4,.

Equivalent attractors are said to be of the same type and each equivalence class of
chaotic attractors is an attractor type. The above definition is ‘strong’ in the sense that there
is a large number of different attractor types. The question of a2 ‘weaker’ definition (and
only a small number of attractor types) will be addressed in a forthcoming paper; the main
purpose of this letter is to present examples of equivalent chaotic attractors.

Piecewise-linear systems. Consider a class C of piecewise-linear continuous dynamical
systems, defined by a state equation:
Ajz+ b x =1
& = f(z) = | Az -1<n <1 (1)
A_z+c n<-1
where Ay = [a,-J,-] isa3x3 mgtrix, b= (bl_, bz, bg)T, c= (c1. Cay (,'3)T and
b 00 ' eg 0 0
A1=Au—[bz 0 0] A..1=Ao+|:t’.‘z 0 Oi| (2)
b3 00 3 00
.Equations (1) and (2) define a 15-parameter family of ordinary differential equations with
parameters: ai,js bi and ¢ i, J = lv 2, 3. Let (A'b A‘Z: A'3)1' (ﬂ’l’ Mz, #‘3) and (Uls UZ; U3)
denote the eigenvalues of the matrices Ag, A; and A_; respectively. We will henceforth
refer to these eigenvalues as the dynamical system’s eigenvalues. Define

1 0 0 3
K= ]:au @12 a13:i k3i.='zaljaji i=12,3 3)
kst ky ks =t
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Proposition 1. Let Cy be a subset of C such that det K = 0. Then if two dynamical systems
F» g € C\Co have the same eigenvalues, Ay is equivalent to A,.

Proof. Let us define the following:

n=M4+2r+2As3 gL =1+ a2+ U3 r=vi+umtu
P2 =Aihz+ A1dg 4+ Azh3 o = patla =+ pz -+ Has ra = v+ vz +1hg
P3 = MAars q3 = b1 42443 r3 = Vs,

Define the transformation
z = K=x.

Since det K # 0, K~! exists and (1) transforms into

KAK 'z + Kb uzl
2= 1 KAK™z ~1<z €1 @
KA_IK"z-l-Kt; 7 € ~1
where
0 1 0
KAK™ = [ 0 0 1 ]
Py —p2 P11 .
n—a by
Kb = g — p2+ p1(pr — q1) =|b
p3s— a3 — papy —q1) + pilgz — p2+ pi(pr — 1)l by
n—p )
Ke= p2—nr+pi(ry — p1) ]E [Ez] (5)
r3 —p3s — p2lri — pO) + prlp2 =2 + pa(ry — p1)l £3

—b; 1 0

KA; K™ =[ —by 0 1 ]
=bs+ps —pr P
& 1 0

KA_ K™ =[ & 0 1 ]
&+ps —p2 pi

Assume that f, g € C\Cp have the same eigenvalues. Then, both systems can be
transformed into {(4). As a consequence, if F and g have chaotic attractors Af and A,
respectively, then they are equivalent: the homeomorphism 4 is given by the matrix KK

(or K='Ky) (K¢ denotes the matrix K for system £, and K, denotes the matrix K for g). O

In fact, with proposition 1 we have proved much more; namely, that the dynamics of
every system in C\(o can be mapped into the system (4). Thus, the separate analysis of
every 15-parameter system in C\Cp is unnecessary: it is enough to make the analysis of the
nine-parameter system (4) only.

Note that dynamical systems considered in [2] are elements in C\Cp.

The attempt to identify the equivalence classes of the nine-parameter family will be
presented in [3].
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Bidirectional coupling. Let us consider the following dynamical system:

& = f(@)+ Ay — =) ©
Y=gy +ulz—y

where XA, j& are real non-negative parameters. Let us assume that the dynamical systems
T = f(x), ¥ = g(y) and (6) have chaotic attractors Ay, A, and A respectively. Denote
the projection of A on the subspace & = (x1,x2, x3)T € R* by A, and on the subspace
¥ = (1, 2, y3)T € R3 by A,

Proposition 2. () If f = g and |e(t = 0) — y(t = 0)| is sufficiently small, then there
exists & value of k =X 4w, say k,, such that for k > k,, A, is equivalent to A,.

(ii) i f 5 g and A = oo, then A, is equivalent to A,.

(i) if f # g and u = cc, then A, is equivalent o Ay.

Proof. For simplicity we present a proof for the piecewise-linear systems case; a general
proof will be given in [3].
(1) First note that the inequalities

n

]ajj]>2|aiji i=L...,n
=
i
are sufficient for the stability of a matrix [a;;] with negative diagonal elements. Denote
% = o — gy, so that from (6) we have

u = {—=A+ p)E+ Df[y=o}u+ Oz, y) =Au+ Oz, y)

where Df is the Jacobian matrix of f, E is the unit matrix and O(z, ) represents the
higher-order terms. It is obvious that one can find % such that matrix A = [g;;] is stable,
that is 2 = ¢ is asymptotically stable, and @(¢) approaches y(z) as ¢ — co. Hence, Ay is
equivalent to Ay (the homeomorphism #: R3 — R? is the identity).

(if) Equation (6) can be rewritten as |

et =csf(x)+ (y—x) @
y=gW) tu-1y
where & = 1/A. If &€ = 0, the last equation is equivalent to
r=y
Y=g |
Thus, A, is equivalent to A, (again, the homeomorphism #: R* — R? is the identity).
The proof of (fii) is similar. 0

The second and the third part of proposition 2 can be improved in the following way.

Proposition 3. For sufficiently small |2(¢ = 0)] + [y(r = 0)[ and &, there exists # such
that z(¢) converges uniformly to y() as ¢ — 0™ on all subsets of #fp < ¢ < co.

Proof. The proof is similar to the proof of theorem 2 in [4,7]. O
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Figure 1. (a) Rossler and (&) Lorenz attractor.

We shall now consider in more detail the case f #* g and finite, but with ‘farge
enough’ A. For given dynamical systems we can show numerically that A, is equivalent
to Ay. Assume that the vector field f is that of a Rossler system and g is that
of a Lorenz system: f = (—(x2 + x3),x1 4+ 0.2xz, 0.2 4+ x3(x; — 5.57), and g =
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Figure 2. The projection of the chaotic attractor A on the subspace (a) T = (r1, 32, x3)T € B
and (5) on the subspace ¥ = (v, y2, y3)T € B3,

(10(=y1 + ¥2), 281 — ¥2 — Y1¥3. Y1¥2 — 2.666y3). Figures 1 and 2 show the attractors
A, and A, for . = p =0 and A = 100, & = 1, respectively. Both attractors in figure 2
are similar. Our analysis of the equivalence of these two attractors is based on the fact
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Figure 3. Lorenz template.

that a dense set of unstable periodic orbits are embedded within the chaotic attractor. The
topological structure of the flow can be visualized by constructing a template or knot-holder.
In its construction we use the approach of Mindlin ez a! [5]: the template is constructed from
the attractor by extracting only the lowest periodic orbits embedded in the atiractor. The
result is shown in figure 3: attractors A, and A, have the same template, namely the welt
known Lorenz template [6]. The template is a tool for computing the topological properties
of the periodic orbits embedded in the attractor. Hence, periodic orbits embedded in both
attractors A, and A, have the same topological properties. As a consequence, for two knots
K and K, of the same type, K1 C A, and K3 C A,, there exists 2 homeomorphism of R®
onto itself which maps Ky onto K2. Thus, we conjecture that A, and A, are equivalent.
Additional evidence that attractors Ax and A, are equivalent can be given by considering
equations (7). If # is ‘small enough’, it follows & =~ y, that is, the considered chaotic
attractors are equivalent.
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